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Site-Specific Protein Modification Using a Ketone The keto group is an attractive “handle”It is sufficiently
Handle stable to be incorporated into a protein in an unprotected form
using a crudeescherichia coli invitro extract; and yet it will
react rapidly with hydrazides and alkoxyamines in aqueous
solution to form hydrazones and oximes, respecti¥elyur-
thermore, both hydrazones and oximes are stable under physi-
ological conditions. The reaction of a ketone with a hydrazide
is orthogonal to the functional groups present in prot&iffhis
chemistry has been used to label peptides and proteins at their
N-termini by oxidizing anN-terminal serine with periodate to
the corresponding aldehyde which is subsequently coupled to
an appropriate hydrazide. In addition, peptide dendrimers and
Receied April 12, 1996 synthetic proteins have been constructed by coupling peptide
' fragments via hydrazone or oxime linkagés

The reactive thiol side chain of the natural amino acid cysteine _ Initially, we considered two different keto amino acidsand
has been widely exploited for the selective modification of 2 These two amino acids differ both in the proximity of the
proteins with a variety of biophysical probksss a structural carbonyl group to the protein packbone and in their reactivity
probe? to stabilize proteins and control enzyme activitgnd ~ due to the electron-withdrawing-phenoxy group and dif-
for the generation of semisynthetic protefndhe availability ~ ferential steric effects. The longer homologueslafere not
of a second, nonproteinogenic amino acid with such selective €Mployed because they are prone to cyclic imine formafion.
reactivity would be very useful in situations requiring the 1 he required\-protected amino acid of ketorlewas prepared
incorporation of two different labels into a protein, selective oM 4,5-dehydroleucine by protection of theamine with
derivatization of unpurified protein, intracellular cross-linking Nitroveratryl chloroformate followed by ozonolysis of the
or protein modification, or where a unique cysteine residue terminal olefin. Ketone2 was prepared similarly fron©-
cannot be engineered into a protein. Although biosynthetic (Methylally)tyrosine, which was synthesized by treating the
approaches involving chemically-modified or synthetic ami- COPPer(ll) complex of tyrosine with methylallyl bromide in
noacyl-tRNAs can be used to incorporate probes directly into alkaline solutiort*
proteins, the biosynthetic machinery places constraints on the
nature of the side-chain functionality which can be incorporated.
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specifically which relies on an unnatural amino acid with an 0 NHy

electrophilic ketone side chain (Scheme 1). The unnatural keto 1 2

amino acid is introduced into a unique site in a protein using

the method of unnatural amino acid mutagen@sihe carbony! The efficiency with whichl and2 could be incorporated into

group of this amino acid can then be modified with a broad a protein by the biosynthetic machinery was tested at two solvent
range of molecules containing hydrazide or alkoxyamine groups. accessible sites (Sérand Al&?) in the protein T4 lysozyme
To demonstrate this approach, T4 lysozyme containing an (T4L) using unnatural amino acid mutagendsisAn amber
unnatural keto amino acid was prepared and then reacted withsyppressor tRNA was charged with the keto amino atiaisd
a fluorescein hydrazide to provide T4 lysozyme labeled site- 2 using established methods, and the aminoacylated suppressor
specifically with fluorescein via a stable hydrazone linkage.  tRNAs were combined with mutant TAL genes encoding amber
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Scheme 1

aqueous buffer, pH 6.8

steroid isomerase, and thymidylate synth®s@ased on these  chloride. The mixture was allowed to react for 36 h at room
results, keton@ was chosen for use in the subsequent chemical temperature and then was desalted and purified to homogeneity
derivatization experiments. by ion-exchange chromatography. A comparison of the fluo-
In order to determine the efficiency with which proteins rescence spectra of labeled T4L a—~ 2 and “labeled” wt
containing keton® can be modified, a TAL mutant containing T4L shows that only the protein containing the ketone at site
2 at site 82 was isolated from a large-scalevitro reaction 82 has been labeled with fluorescein (Figure 1). Based on a
and labeled with a commercially available fluorescein hydrazide comparison to the fluorescence emission spectrum of T4L
(Scheme 1). As a control, wild-type (wt) T4L was isolated from labeled nonspecifically with the NHS ester of fluorescein, the
a large-scalein sitro reaction and taken through identical extent of labeling is judged to be approximately 58%This
labeling condition$® T4L Ala®2— 2 and wt T4L were prepared  strategy should facilitate the versatile alteration of protein
from 10 mL and 3 mLin vitro reactions, respectively, and structure, including controlled post-translational modification
partially purified by ion-exchange chromatography using tandem with polysaccharides and terpenes and the introduction of
DEAE-CM cartridges to yield ca. 1&g of each protein. biophysical probes. Currently the keto “handle” is being used
Portions of these crude protein solutions were exchanged intofor the site-specific introduction of novel fluorophotginto
100 mM potassium phosphate, pH 6.8, 0.5 M sodium chloride proteins to produce biosensors which can report specific protein
and concentrated. Fluorescein hydrazide was added to theactivities within individual, living cellsd
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N . Supporting Information Available: Experimental procedures for

; 8 the syntheses of ketong&s&nd2, for protein purification, for the labeling

S reactions, and for the fluorescence experiments (7 pages). See any
current masthead page for ordering and Internet access instructions.
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- (15) Barrett, J. E.; Dayem, L.; Froland, W.; Cornish, V. W.; Schultz, P.
. G. Unpublished results.
t.. (16) For both the T4L mutant A¥a— ketone2 and wt T4L, the protein
r purification, labeling, and fluorescence experiments were also done at pH
3 freee.. 4.5, giving the same results.
0 i (17)In vivo produced T4L was labeled non-specifically with the NHS
500 520 540 560 580 600 620 ester of fluorescein. The extent of labeling was judged to be approximately
Wavelength (nm) 1:1 dye to protein based on the ratio afeéto Azgo, and the concentration
of fluorescein was determined from thesf A caveat to this quantification
Figure 1. Fluorescence emission spectra (uncorrected) of W||d_type method is that the fluorescence of fluorescein is influenced by the exact

o g protein environment.
T4 lysozyme (solid line) and of the T4 lysozyme mutant®ta ketone (18) (a) Hahn, K.; Waggoner, A.; Taylor, D. Biol. Chem 199 265

2 (dotted line) that have been treated with fluorescein hydrazide; 20335-20345. (b) Hahn, K.; DeBiasio, R.; Taylor, Nature1992 359,
excitation at 490 nm. 736-739.
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